2 6 Se p 20 06 geometry and reducibility of induction of Hopf group co - algebra

نویسندگان

  • A. S. Hegazi
  • F. Ismail
  • M. M. Elsofy
چکیده

In this work we study the induction (induced and coinduced)theory for Hopf group coalgebra. We define a substructure B of a Hopf group coalgebra H, called subHopf group coalgebra. Also, we have introduced the definition of Hopf group suboalgebra and group coisotropic quantum subgroup of H. The properties of the algebraic structure of the induced and coinduced are given. Moreover, a framework of the geometric interperation and simplicity theory of such representation strructure are stuided.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 9 Se p 20 06 A multipurpose Hopf deformation of the Algebra of Feynman - like Diagrams

We construct a three parameter deformation of the Hopf algebra LDIAG. This new algebra is a true Hopf deformation which reduces to LDIAG on one hand and to MQSym on the other , relating LDIAG to other Hopf algebras of interest in contemporary physics. Further , its product law reproduces that of the algebra of polyzeta functions .

متن کامل

Part Iv.1. Lie Algebras and Co-commutative Co-algebras

Introduction 2 1. Lie algebras: recollections 3 1.1. The basics 3 1.2. Scaling the structure 3 1.3. Filtrations 4 1.4. The Chevalley complex 4 1.5. The functor of primitives 6 1.6. The enhanced adjunction 6 1.7. The symmetric Hopf algebra 8 2. Looping Lie algebras 9 2.1. Group-Lie algebras 10 2.2. Forgetting to group structure 10 2.3. Chevalley complex of group-Lie algebras 11 2.4. Chevalley co...

متن کامل

NOTES ON REGULAR MULTIPLIER HOPF ALGEBRAS

In this paper, we associate canonically a precyclic mod- ule to a regular multiplier Hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition

متن کامل

Adjunctions between Hom and Tensor as endofunctors of (bi-) module category of comodule algebras over a quasi-Hopf algebra.

For a Hopf algebra H over a commutative ring k and a left H-module V, the tensor endofunctors V k - and - kV are left adjoint to some kinds of  Hom-endofunctors of _HM. The units and counits of these adjunctions are formally trivial as in the classical case.The category of (bi-) modules over a quasi-Hopf algebra is monoidal and some generalized versions of  Hom-tensor relations have been st...

متن کامل

A note on the new basis in the mod 2 Steenrod algebra

‎The Mod $2$ Steenrod algebra is a Hopf algebra that consists of the primary cohomology operations‎, ‎denoted by $Sq^n$‎, ‎between the cohomology groups with $mathbb{Z}_2$ coefficients of any topological space‎. ‎Regarding to its vector space structure over $mathbb{Z}_2$‎, ‎it has many base systems and some of the base systems can also be restricted to its sub algebras‎. ‎On the contrary‎, ‎in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006